

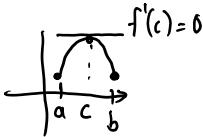
Lecture 14

Wednesday, October 5, 2016 8:15 AM

Rolle's Theorem:

Let f be a function that satisfies the following three hypotheses:

- 1) f is continuous on the closed interval $[a, b]$. ✓
- 2) f is differentiable on the open interval (a, b) . ✓
- 3) $f(a) = f(b)$. ✓



Then there is a number c in (a, b) such that $f'(c) = 0$.

Proof of Theorem can be found in the book, Page 287

Example: Show that the function $f(x) = x^3 + x - 1$ has exactly one root.

Step 1:

Last class, we used Intermediate Value theorem to show that the function $f(x)$ has at least one root.

Step 2 We would like to show it has at most 1 root.

Idea Prove it by contradiction.

Suppose f has more than 1 root.

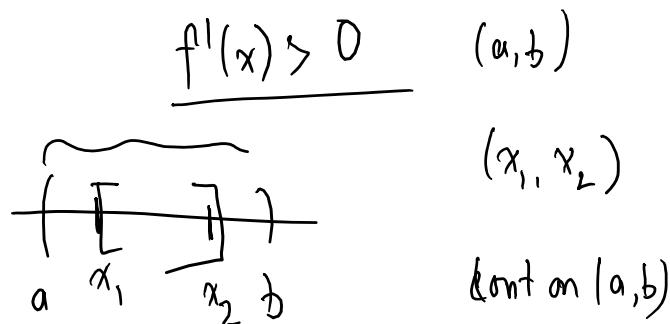
Let a, b be roots of f i.e. $f(a) = 0 = f(b)$.

$f(x) = x^3 + x - 1$ is a polynomial and therefore cont on $[a, b]$ and diff on (a, b) .

Then by Rolle's Thm, there is a number c betn $a \& b$ such that $f'(c) = 0$.

$f'(x) = 3x^2 + 1$, then $f'(c) = 3c^2 + 1$

$3c^2 + 1 = 0 \Rightarrow c^2 = -\frac{1}{3}$ (false) contradiction ✓



(cont on (a, b))

Therefore, by contradiction, $f(x)$ has at most 1 root.

THE MEAN VALUE THM

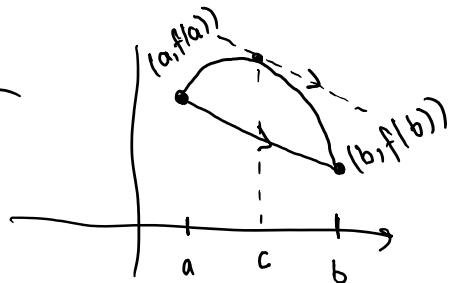
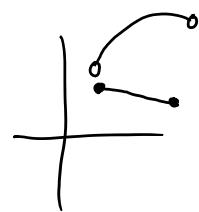
Let f be a function that satisfies the following two hypothesis:

1. f is cont on $[a, b]$ 2. f is diff on (a, b) .

Then, there is a number c betn $a \& b$ s.t

$$f'(c) = \frac{f(b) - f(a)}{b - a} \quad \text{secant lines}$$

Geometrically



MVT says there is a pt c in (a, b) where tangent line to the curve at c is parallel to the secant line.

Rmk If $f(a) = f(b)$, then we get the same Statement as the Rolle's Theorem.

Rmk The proof of MVT

Basic Idea Apply Rolle's Thm to $h(x)$ where,

$$h(x) = f(x) - \frac{f(b) - f(a)}{b - a} (x - a)$$

$$h(a) = 0 = h(b)$$

Rolle's Thm, there is a number c in (a, b) s.t $h'(c) = 0$

Ex Spse $f(1) = 3$, and $f'(x) \leq 11$ for all values of x . How large can $f(4)$ be?

Sln We are given that the func f is diff.

everywhere, and hence continuous everywhere.

We can apply MVT on the interval $[1, 4]$.

Then there is a number c betn 1 and 4 s.t

$$f'(c) = \frac{f(4) - f(1)}{4 - 1} \Rightarrow f'(c) = \frac{f(4) - 3}{3}$$

$$\Rightarrow 3f'(c) = f(4) - 3 \Rightarrow f(4) = \underline{3f'(c) + 3}$$

$f'(x) \leq 11$. In particular $f'(c) \leq 11$.

$$f(4) = \underline{3f'(c) + 3} \leq 3 \cdot \underline{11} + 3 = 36$$

- Thm If $f'(x) = 0$ for all x in the interval (a, b) ,
then f is constant on (a, b) . \leftarrow

Proof in book, Ch 4.2 DIY.

Cor If $f'(x) = g'(x)$ for x in an interval (a, b) ,

then $f - g$ is constant on (a, b) i.e

$$f(x) = g(x) + c \quad (c \text{ is a constant})$$

Pf Let $H(x) = f(x) - g(x)$

$$H'(x) = f'(x) - g'(x) = 0 \text{ for all } x \text{ in } (a, b)$$

$H(x)$ is constant on (a, b) i.e $f - g$ is constant.

Ch 4.3

Q What does f' tell us about f ?

Increasing / Decreasing Test.

a) If $f'(x) > 0$ on an interval, then f is increasing on that interval.

b) If $f'(x) < 0$ " " " , then " " decreasing " " " .

Pf of a) Pick any x_1, x_2 in that interval w/ $\underline{x_1 < x_2} \Rightarrow 0 < x_2 - x_1$

To show function is increasing, we need to show $\underline{f(x_1) < f(x_2)}$

So f is diff on (x_1, x_2)

f is cont on $[x_1, x_2]$

So by NVT, there is a number c betn $x_1 \& x_2$ s.t

↙

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \Rightarrow f(x_2) - f(x_1) = \underbrace{f'(c)}_{\substack{\vee \\ 0}} \underbrace{(x_2 - x_1)}_{\substack{\vee \\ 0}}$$

$\Rightarrow f(x_2) - f(x_1) > 0 \Rightarrow f(x_2) > f(x_1)$ as desired.