Lecture 14

Wednesday, October 5, 2016 8:15 AM

Rolle's Theorem:

Let f be a function that satisfies the following three hypotheses:

1) fis continuous on the closed interval [a,b]. \/ 5
2) fis differentiable on the open interval (a,b). ; \ g
3) f(a)=f(b).

.} ac b

Then there is a number c in (a,b) such that f'( c) =0.
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Proof of Theorem can be found in the book, Page 287
Example: Show that the function f(x) = xA3 + x - 1 has exactly one root.

Step 1:

Last class, we used Intermediate Value theorem to show that the function f(x) has
at least one root.
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